Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 195: 106721, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331005

RESUMEN

Hydrogen sulfide (H2S), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble H2S-releasing ascorbic acid derivative, BM-164, to combine the beneficial cardiovascular and anti-inflammatory effects of H2S with the excellent water solubility and antioxidant properties of ascorbic acid. DPPH antioxidant assay revealed that the antioxidant activity of BM-164 in the presence of a myocardial tissue homogenate (extract) increased continuously over the 120 min test interval due to the continuous release of H2S from BM-164. The cytotoxicity of BM-164 was tested by MTT assay on H9c2 cells, which resulted in no cytotoxic effect at concentrations of 10 to 30 µM. The possible beneficial effects of BM-164 (30 µM) was examined in isolated 'Langendorff' rat hearts. The incidence of ventricular fibrillation (VF) was significantly reduced from its control value of 79 % to 31 % in the BM-164 treated group, and the infarct size was also diminished from the control value of 28 % to 14 % in the BM-164 treated group. However, coronary flow (CF) and heart rate (HR) values in the BM-164 treated group did not show significantly different levels in comparison with the drug-free control, although a non-significant recovery in both CF and HR was observed at each time point. We attempted to reveal the mechanism of action of BM-164, focusing on the processes of autophagy and apoptosis. The expression of key autophagic and apoptotic markers in isolated rat hearts were detected by Western blot analysis. All the examined autophagy-related proteins showed increased expression levels in the BM-164 treated group in comparison to the drug-free control and/or ascorbic acid treated groups, while the changes in the expression of apoptotic markers were not obvious. In conclusion, the designed water soluble H2S releasing ascorbic acid derivative, BM-164, showed better cardiac protection against ischemia/reperfusion-induced injury compared to the untreated and ascorbic acid treated hearts, respectively.


Asunto(s)
Sulfuro de Hidrógeno , Daño por Reperfusión Miocárdica , Ratas , Animales , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Antioxidantes/farmacología , Ratas Wistar , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Isquemia , Antiinflamatorios/uso terapéutico , Agua , Reperfusión , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico
2.
Sci Rep ; 13(1): 19298, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935846

RESUMEN

Alternaria, a cosmopolitan fungal genus is a dominant member of the grapevine (Vitis vinifera) microbiome. Several Alternaria species are known to produce a variety of secondary metabolites, which are particularly relevant to plant protection and food safety in field crops. According to previous findings, the majority of Alternaria species inhabiting grapevine belong to Alternaria sect. Alternaria. However, the phylogenetic diversity and secondary metabolite production of the distinct Alternaria species has remained unclear. In this study, our aim was to examine the genetic and metabolic diversity of endophytic Alternaria isolates associated with the above-ground tissues of the grapevine. Altogether, 270 Alternaria isolates were collected from asymptomatic leaves and grape clusters of different grapevine varieties in the Eger wine region of Hungary. After analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS) and RNA polymerase second largest subunit (rpb2) sequences, 170 isolates were chosen for further analyses. Sequences of the Alternaria major allergen gene (Alt a 1), endopolygalacturonase (endoPG), OPA10-2, and KOG1058 were also included in the phylogenetic analyses. Identification of secondary metabolites and metabolite profiling of the isolates were performed using high-performance liquid chromatography (HPLC)-high-resolution tandem mass spectrometry (HR-MS/MS). The multilocus phylogeny results revealed two distinct groups in grapevine, namely A. alternata and the A. arborescens species complex (AASC). Eight main metabolites were identified in all collected Alternaria isolates, regardless of their affiliation to the species and lineages. Multivariate analyses of untargeted metabolites found no clear separations; however, a partial least squares-discriminant analysis model was able to successfully discriminate between the metabolic datasets from isolates belonging to the AASC and A. alternata. By conducting univariate analysis based on the discriminant ability of the metabolites, we also identified several features exhibiting large and significant variation between A. alternata and the AASC. The separation of these groups may suggest functional differences, which may also play a role in the functioning of the plant microbiome.


Asunto(s)
Vitis , Vino , Alternaria/metabolismo , Filogenia , Vitis/microbiología , Espectrometría de Masas en Tándem
3.
Chemistry ; 29(11): e202203248, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36437234

RESUMEN

The first concise and efficient synthesis of some fluorine-containing morpholino nucleosides has been developed. One synthetic strategy was based on the oxidative ring cleavage of the vicinal diol unit of uridine, cytidine adenosine and guanosine derivatives, followed by cyclisation of the dialdehyde intermediates by double reductive amination with fluorinated primary amines to obtain various N-fluoroalkylated morpholinos. Another approach involved cyclisation of the diformyl intermediates with ammonia source, followed by dithiocarbamate formation and desulfurization-fluorination with diethylaminosulfur trifluoride yielding the corresponding morpholine-based nucleoside analogues with a N-CF3 element in their structure.

4.
PLoS One ; 17(4): e0266782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35468161

RESUMEN

INTRODUCTION: Beyond the three-dimensional fibrin network, the mechanical and lytic stability of thrombi is supported by the matrix of neutrophil extracellular traps (NETs) composed of polyanionic DNA meshwork with attached proteins including polycationic histones. Polyphosphates represent another type of polyanions, which in their linear form are known to enhance the fibrin stabilizing effects of DNA and histones. However, in vivo polyphosphates are also present in the form of nanoparticles (PolyP-NP), the interference of which with the fibrin/NET matrix is poorly characterized. AIMS: To compare the effects of linear and nanoparticulate polyphosphates, and their combinations with relevant NET components (DNA, histone H3) on fibrin formation, structure, and lysis in in vitro assays focusing on histone-polyphosphate interactions. METHODS: Transmission electron microscopy and dynamic light scattering for stability of the PolyP-NP preparations. Turbidimetry for kinetics of fibrinogen clotting by thrombin and fibrin dissolution by tissue-type plasminogen activator/plasminogen. Scanning electron microscopy for fibrin structure. Surface plasmon resonance for strength of histone-PolyP interactions. RESULTS: Both linear PolyP and PolyP-NP accelerated the fibrin formation and slowed down its dissolution and these effects were strongly dependent on the number of individual PolyP particles and not on their size. Addition of DNA did not modify significantly the PolyP-NP effects on fibrin formation and lysis. Both linear and nanoparticulate PolyP counteracted the effect of histone in the acceleration of fibrinogen clotting by thrombin. PolyP-NP, but not linear PolyP enhanced the prolongation of lysis time in fibrin containing histone and caused more pronounced thickening of the fibrin fibers than the linear form. Finally, PolyP-NP bound weaker to histone than the linear form. CONCLUSIONS: The interaction of PolyP with histone was a stronger modulator of fibrin formation and lysis than its interaction with DNA. In addition, the PolyP nanoparticles enhanced the thrombus stabilizing effects of histone more effectively than linear PolyP.


Asunto(s)
Nanopartículas , Trombosis , ADN , Fibrina/metabolismo , Fibrinógeno/metabolismo , Histonas , Humanos , Polifosfatos/metabolismo , Trombina/metabolismo , Trombosis/metabolismo
5.
Pest Manag Sci ; 77(10): 4539-4544, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34047445

RESUMEN

BACKGROUND: Mineral oils have been widely used in the pest control of several crops. However, their mode of action is poorly understood, especially in the case of their antifungal properties. The possible direct fungicidal activity and the stress-inducing capability of paraffin oil on grapevine were examined using Vitis vinifera L. cv 'Kékfrankos' cuttings and the fungus Erysiphe necator, the causal agent of powdery mildew. RESULTS: Our experiments demonstrated that paraffin oil does not have fungicide activity on E. necator, but induces significant stress-related changes in grapevine physiology. Elevated H2 O2 production and the accumulation of the phytohormone salicylic acid were measured. Secondary thickening of the cell wall by lignin deposition and the accumulation of phenolic compounds were also observed. Some enzyme activities related to the detoxification of reactive oxygen species, disease response, and the synthesis of lignin were changed in accordance with the determined changes in cell wall composition and H2 O2 levels. CONCLUSION: The results suggest that paraffin oil induces stress responses on grapevine leaves through oxidative burst, and this response is systemized by salicylic acid. The accumulation of lignin and water-soluble phenolics may be directly responsible for the paraffin oil-induced resistance of grapevine against powdery mildew. © 2021 Society of Chemical Industry.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Humanos , Aceites , Parafina , Enfermedades de las Plantas , Ácido Salicílico/farmacología
6.
Biomed Res Int ; 2017: 5130495, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28758116

RESUMEN

Protease encapsulation and its targeted release in thrombi may contribute to the reduction of haemorrhagic complications of thrombolysis. We aimed to prepare sterically stabilized trypsin-loaded liposomes (SSLT) and characterize their structure and fibrinolytic efficiency. Hydrogenated soybean phosphatidylcholine-based SSLT were prepared and their structure was studied by transmission electron microscopy combined with freeze fracture (FF-TEM), Fourier transform infrared spectroscopy (FT-IR), and small-angle X-ray scattering (SAXS). Fibrinolytic activity was examined at 45, 37, or 24°C on fibrin or plasma clots with turbidimetric and permeation-driven lysis assays. Trypsin was shown to be attached to the inner surface of vesicles (SAXS and FF-TEM) close to the lipid hydrophilic/hydrophobic interface (FT-IR). The thermosensitivity of SSLT was evidenced by enhanced fibrinolysis at 45°C: time to reduce the maximal turbidity to 20% decreased by 8.6% compared to 37°C and fibrin degradation product concentration in the permeation lysis assay was 2-fold to 5-fold higher than that at 24°C. SSLT exerted its fibrinolytic action on fibrin clots under both static and dynamic conditions, whereas plasma clot dissolution was observed only in the permeation-driven assay. The improved fibrinolytic efficiency of SSLT under dynamic conditions suggests that they may serve as a novel therapeutic candidate for dissolution of intravascular thrombi, which are typically exposed to permeation forces.


Asunto(s)
Fibrinólisis/efectos de los fármacos , Fibrinolíticos/farmacología , Terapia Trombolítica/métodos , Tripsina/farmacología , Fibrinolíticos/química , Humanos , Liposomas , Relación Estructura-Actividad , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...